
DEEPSTEREOBRUSH: INTERACTIVE DEPTH MAP CREATION

Sebastian Knorr1,3,∗, Matis Hudon1,∗, Julian Cabrera2,∗, Thomas Sikora3, Aljosa Smolic1 †
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ABSTRACT

In this paper, we introduce a novel interactive depth map cre-
ation approach for image sequences which uses depth scrib-
bles as input at user-defined keyframes. These scribbled depth
values are then propagated within these keyframes and across
the entire sequence using a 3-dimensional geodesic distance
transform (3D-GDT). In order to further improve the depth
estimation of the intermediate frames, we make use of a con-
volutional neural network (CNN) in an unconventional man-
ner. Our process is based on online learning which allows us
to specifically train a disposable network for each sequence
individually using the user generated depth at keyframes along
with corresponding RGB images as training pairs. Thus, we
actually take advantage of one of the most common issues in
deep learning: over-fitting. Furthermore, we integrated this
approach into a professional interactive depth map creation
application and compared our results against the state of the
art in interactive depth map creation.

Index Terms— depth estimation, 2D-to-3D conversion,
deep learning, CNN, interactive depth map creation, geodesic
distance transform

1. INTRODUCTION

Depth estimation from monocular images and video sequences
is an ongoing and highly active research area with many com-
puter vision applications like e.g. robot navigation, free-view-
point-video, 2D to stereo 3D conversion, urban reconstruc-
tion, object segmentation and detection, etc.. Despite being a
classical problem in computer vision, inferring the geometri-
cal distribution of a generic scene from a single view is still
an open research topic since it is an ill-posed problem. Ap-
proaches for depth map creation can be divided into three cat-
egories: manual approaches as currently used in high-quality
cinematic 2D-to-3D conversion workflows [20, 23], interac-
tive (semi-automatic) approaches which are a combination of
user-input and computer vision algorithms, e.g. [25, 7, 16, 19,
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Fig. 1: Interactive realtime 2D-to-3D conversion workflow.

15], and automatic approaches entirely based on traditional
computer vision algorithms for depth estimation [29, 10] or,
more recently, on convolutional neural networks, e.g. [3, 18,
13, 5, 27, 8].

Fully automatic approaches aim at exploiting different vi-
sual cues such as camera movement, object movement, illu-
mination, etc. to estimate the depth of the scene. Results
provided by these approaches are generally characterized by
a limited accuracy and temporal inconsistency. In this sense,
recent works based on deep learning techniques have shown
promising results, but they do not generalize well and can
only be applied on images with similar scene content. Fur-
thermore, these approaches also suffer from the lack of qual-
ity of the underlying training data. They are often generated
from stereo datasets using disparity estimation or are captured
with e.g additional time-of-flight cameras [6]. Thus, they are
error-prone themselves, i.e. these errors will be learned by the
network. Therefore, fully automatic approaches are not able
to generate depth maps of sufficient quality for several ap-
plication domains such as 3D-TV or 3D cinema. Moreover,
automatic approaches do not allow any creative input which
is often essential for cinematic film productions.

On the other hand, manual approaches are time- and labor-
intensive [20, 23]. First, an accurate object segmentation of
the scene has to be performed using specific rotoscoping or
keying tools, and then a manual depth assignment for each
object has to be carried out. This is usually a costly process
and only affordable for cinematic film productions [23].

The main motivation of this paper is to speed-up the pro-
cess of 2D-to-3D conversion of video sequences while im-
proving accuracy and consistency of the resulting depth maps
in an interactive manner as depicted in Fig. 1. Therefore, we



introduce a novel interactive depth map creation framework
for video sequences which is integrated in the professional
interactive 2D-to-3D conversion software imcube 3D Daily1.
A user scribbles depth values into objects or areas of selected
keyframes. These scribbled depth values are then propagated
within these keyframes and across the entire sequence using a
3-dimensional geodesic distance transform (3D-GDT), which
is the first main contribution of this work. We will show that
our GDT-based approach outperforms the StereoBrush intro-
duced in [25].

As a second main contribution, we replace the 3D-GDT
for depth propagation between keyframes and introduce a novel
approach for intermediate depth map estimation by making
use of a convolutional neural network (CNN) in an unconven-
tional manner. In our approach we do not target to solve the
general problem of estimating the depth map of any given im-
age. Instead, we consider the problem of estimating the depth
maps of a limited set of images like can be the case of frames
within a shot or a scene in a video sequence. Our process is
based on online learning which allows us to train a dispos-
able network for each sequence individually using the user
generated depth at keyframes along with corresponding RGB
images as training pairs. Thus, we actually take advantage of
one of the most common issues in deep learning: the lack of
generalization more popularly known as over-fitting.

Our CNN is based on the classic encoder-decoder archi-
tecture that has proven to be efficiently applied to a wide va-
riety of computer vision related problems. In this work we
show that it can also: (i) learn how to compute accurate depth
maps for the frames within the considered set, and (ii) per-
form as an interactive tool since its training dataset consists
of just the keyframes selected by the user. To the best of
our knowledge, the combination of annotation (here the scrib-
bling of depth) and online deep learning for 2D-to-3D conver-
sion, which we refer to as DeepStereoBrush (DSB), has never
been introduced in the literature before. Finally, We will show
that the depth map interpolation based on deep learning out-
performs the 3D-GDT and thus yields better results for the
entire image sequence.

2. RELATED WORK

Interactive and efficient tools for object segmentation, natural
image matting and video colorization have been introduced in
the literature for more than a decade, e.g. in [11, 28, 12, 1, 24].
A first attempt to convert video footage with interactive user
input in the form of scribbles was proposed by Guttmann et
al. [9]. Their approach combines a diffusion scheme, which
takes into account the local saliency and the local motion over
time, coupled with a classification scheme that assigns depth
to image patches. In [7], the authors introduced a simple
stroke-based depth estimation framework for images. Since

1https://imcube.jimdo.com/products/2d-to-3d/3d-daily/

humans are not efficient in estimating absolute depth values,
they also introduced normal strokes, which enable the user to
place surface orientation constraints.

Liao et al. [16] proposed a semiautomatic system that
converts conventional videos into stereoscopic videos by com-
bining motion analysis, such as structure-from-motion (SfM)
and optical flow estimation, with user interaction. They com-
pared their approach with subjective experiments against [9]
and showed that it is less time consuming while improving
the subjective quality of the stereo results. However, the au-
thors only provide resulting anaglyph pictures of the evalu-
ated scenes but no depth maps which makes it difficult to as-
sess their depth estimation approach. In [19], the authors in-
troduced a method to obtain a depth map from a single image
of a scene by exploiting both image content and user interac-
tion. Compared to previous works, their system allows differ-
ent kinds of user inputs such as perspective and equality con-
straints in certain areas of the scene. More recently, Liao et al.
[14] presented a novel pipeline to generate a depth map from
a single image which supports a variety of user controls, such
as a non-linear depth mapping, a steering mechanism for their
diffusion method (e.g., directionality, emphasis, or reduction
of the influence of image cues), and, similar to [19], relative
depth indications. While such additional constraints improve
the quality of the depth maps, the user intuition decreases due
to more manual input. A fact that these two approaches are
more suitable for higher quality but single image conversion.
Inspired by sculpturing, Lin et al. [17] addressed the depth
map generation of 2D paintings as an iterative stroking-and-
viewing process. Instead of time-consuming optimization of
cost functions, they formulated the problem as a filter-based
scheme to achieve reasonable interactive response time.

Finally, Wang et al. [25] introduced the so called Stereo-
Brush, which integrates interactive depth estimation using sparse
user scribbles and stereo rendering into a single optimiza-
tion framework to convert 2D images and videos directly into
stereo 3D. Their method assumes a piecewise continuous depth
representation, preserving visual continuity in most areas, while
creating sharp depth discontinuities at important object bound-
aries. A similar framework was proposed in [26]. While [25]
is based on the minimization of a cost function, [26] employs
a concept called geodesic distance transform (GDT), which
we have integrated into our framework in a more user-friendly
and GPU-optimized manner (see Section 3 for details).

3. INTERACTIVE FRAMEWORK

In this section, we introduce our approach of a professional
interactive 2D-to-3D conversion workflow (see Fig. 1). A
user scribbles depth values into objects or areas of selected
keyframes and the software estimates a dense depth map by
propagating the depth values between all pixels within this
frame using the geodesic distance transform (GDT). The user
can further improve the results by modifying the depth scrib-
bles or adding new depth scribbles. While the user is scrib-
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Fig. 2: Screenshot of the GUI of imcube 3D Daily with an-
notated (colored) scribbles. The depth of each scribble can be
assigned and adjusted with the widget on the top right.

bling depth values into the image, he gets immediate visual
feedback either in the form of depth maps, stereo left and
right views or as a 3D model of the scene. A screenshot of the
graphical user interface (GUI) is depicted in Fig. 2. The GUI
consists of a couple of widgets which allow easy manipula-
tion of e.g. depth settings (depth adjustment widget for depth
fine-tuning) and rendering settings (depth-to-disparity widget
for linear or non-linear mapping of depth values to disparity).

3.1. Geodesic distance transform

The geodesic distance transform, which is a specialization of
the general distance [22] takes a binary mask image M as in-
put, which contains foreground pixels with value 1 and back-
ground (or seed) pixels with value 0. According to Fabbri et
al. [4] the distance transform of M is a map, in which each
pixel contains the shortest distance to any of the seed pixels
using a distance function d(p,q):

D(p) = min{d(p,q) |M(q) = 0}, (1)

where D is the distance map or distance transform of M , and
p and q are pixel locations. Yatziv and Sapiro [28] defined
the distance function as follows:

d(p,q) = min
Γ∈Pp,q

∫ 1

0

| ∇I(s) · Γ′(s) | ds, (2)

where Pp,q denotes the set of all possible paths between
the points p and q. Γ(s) : R → R2 is one of those paths
parametrized by its arclength s ∈ [0, 1] and Γ′(s) is its spa-
tial derivitive, which is a unit vector along the direction of the
path, i.e. this distance represents the shortest possible path
between pixel p and q, whereas only color or intensity differ-
ences between pixels in image I are considered and no spatial
information.

According to Criminisi et al. [2], the integral in Equation
(2) can be approximated with the following sum:

n∑
k=1

‖ I(xk)− I(xk−1) ‖, (3)

where ‖ · ‖ denotes the L2-norm (i.e. the Euclidean norm).
The possible paths between p and q are assumed to be chains
of neighboring pixels (x0 = p, x1, ..., xn−1, xn = q), con-
sidering an eight-neighborhood structure on the pixel grid.

An example for the GDT applied on an image is shown
in Fig. 3. We refer to [26] for a detailed description of the
implementation of the GDT.

3.2. Blending

In order to propagate scribbled depth values using the GDT,
the image colorization approach of Yatziv and Sapiro [28] is
employed. The main idea is to compute the GDT for each
distinct scribble value and then blend these values for each
pixel independently by weighting the values based on their
corresponding distance at this pixel. First, a distance map Ds

has to be computed for each distinct scribble value s using
Equations (1) and (2). Therefore, the masks Ms have to be
computed first by assigning a value of 0 to scribbled pixel
locations and 1 anywhere else.

With the obtained distance maps, Yatziv and Sapiro [28]
compute the final color value by a weighted sum of the scrib-
bled colors for each pixel, what they refer to as color blending.
Replacing the color by depth, this is expressed by:

depth(p) =

∑
∀s W [Ds(p)] · s∑
∀s W [Ds(p)]

, (4)

where W [·] is a function that transforms small distances into
high values and vice versa and can be defined as:

W (d) = d−r, r > 0, d > 0, (5)

where r is a blending parameter and set to r = 3 in our im-
plementation. Note that d may have values equal to zero after
applying the GDT, e.g. at scribbled pixels. Thus, the distance
d has to be thresholded before applying this function. Further
note that, using such a blend function, the final depth value at
each pixel is actually a mixture of all existing scribble values.
However, the blend function ensures that the scribble value
with a small distance gets a high weight and hence a high
contribution to the final depth value.

The whole propagation procedure is summarized in the
flowchart in Fig. 3.

3.3. Depth propagation in image sequences

In order to extend the 2-dimensional GDT for single frames to
image sequences, temporal neighbors have to be included into
the neighborhood definition when computing the GDT. This
can be seen as stacking all the images of the sequence on top
of each other to form a 3-dimensional image cube. Such rep-
resentation had also been introduced in [1] but for segmenta-
tion and matting in videos. In our GDT-based depth map cre-
ation approach, we increase the eight-neighborhood structure
on the pixel grid as described in Section 3.1 in the temporal
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Fig. 3: This flowchart illustrates the scribble propagation procedure for a sample image with black (gray value 0) and white(gray
value 255) scribbles. Note that disconnected strokes are treated as a single scribble if they have the same value [26].

domain by adding two neighboring pixels at the same location
of the source pixel in the consecutive frames. We refer to this
spatio-temporal GDT as 3D-GDT.

Please note that in case of fast motion of objects, which
had been scribbled in one keyframe, an object in two suc-
cessive frames may not overlap anymore, i.e. the color may
change for the two temporal neighbor pixels resulting in a
high geodesic distance [26]. In order to deal with fast moving
objects, additional keyframes with input scribbles need to be
selected.

4. DEEP LEARNING APPROACH FOR DEPTH MAP
INTERPOLATION

Deep learning solutions have been succesfully proposed for
different computer vision related problems, including depth
estimation from a single view. Nevertheless, the quality of
the depth maps provided by these fully automatic approaches
based on CNNs is still far from the results obtained using
semi-automatic tools. In this work, we do not address the
problem of automatic estimation of depth maps for generic
scenes. Instead, we focus on the more constrained problem of
estimating depth maps for the intermediate frames of the se-
quence. For that, we propose a CNN that is only trained with
the scribbled depth maps of the keyframes.

Our proposed CNN follows an encoder-decoder architec-
ture, since this type of network has proven to produce state of
the art results for several computer vision problems including
latest research on depth estimation [5][8]. More specifically,
the encoder consists of seven convolution steps that half the
dimensions of the image in each step. The convolution blocks
consist of a triplet of a 2D convolution, a batch normaliza-
tion and a ReLu layer. The decoder consists of seven decon-
volution blocks which follow the upsampling-deconvolution
scheme proposed in [21] in order to minimize the appearance
of checkerboard pattern artifacts. Additionally, to preserve
the high frequency details of the images, skip connections
with the features computed at the encoder are used. Finally,
dropout layers are used for the first two deconvolution blocks
to prevent the network from an excessive over-fitting. A sum-

Convolution block Output dimensions

1 5× 5 2D-conv, stride 2, F filters H/2×W/2× F
2 Batch normalization H/2×W/2× F
3 ReLu H/2×W/2× F

Deconvolution Block Output dimensions

1 Image upsampling ×2 H × 2×W × 2× F
2 5× 5 2D-conv, stride 1, F filters H × 2×W × 2× F
3 Batch normalization H × 2×W × 2× F
4 ReLu H × 2×W × 2× F

DeepStereoBrush CNN Output

1 5× 5 2D-conv, stride 2, 64 filters H/2×W/2× 64
2 ReLu H/2×W/2× 64
3 Conv block, 128 filters H/4×W/4× 128
4 Conv block, 256 filters H/8×W/8× 256
5 Conv block, 512 filters H/16×W/16× 512
6 Conv block, 512 filters H/32×W/32× 512
7 Conv block, 512 filters H/64×W/64× 512
8 Conv block, 512 filters H/128×W/128× 512
9 Deconv block, 512 filters H/64×W/64× 512

Dropout 50 % H/64×W/64× 512
Concat with layer 7 H/64×W/64× 1024

10 Deconv block, 512 filters H/32×W/32× 512
Dropout 50 % H/32×W/32× 512
Concat with layer 6 H/32×W/32× 1024

11 Deconv block, 512 filters H/16×W/16× 512
Concat with layer 5 H/16×W/16× 1024

12 Deconv block, 256 filters H/8×W/8× 256
Concat with layer 4 H/8×W/8× 512

13 Deconv block, 128 filters H/4×W/4× 128
Concat with layer 3 H/4×W/4× 256

14 Deconv block, 64 filters H/2×W/2× 64
Concat with layer 2 H/2×W/2× 128

13 Deconv block*, 64 filters H ×W × 64
*No batch normalization, No ReLu

14 Tanh H ×W × 1

Table 1: Summary of the end-to-end DeepStereoBrush CNN
for estimating depth maps of intermediate frames.

mary with the main characteristics of the DeepStereoBrush
CNN is presented in Table 1.

The model is trained end-to-end from a random initializa-
tion in a supervised manner using as ground truth the depth
data from the scribbled key frames and the GDT algorithm.
The loss function selected is the L1-norm between the esti-
mated disparity and its correspondent ground truth value.



Fig. 4: Comparison between the StereoBrush (optimization-
based) [25] (middle column) and our GDT-based approach
[26] (right column) using the same input scribbles.

5. RESULTS

5.1. Comparison of GDT with StereoBrush

We compared our GDT-based approach against a re-imple-
mentation of the StereoBrush (i.e., an optimization-based ap-
proach) introduced by Disney Research in [25]. Fig. 4 shows
exemplary results of the optimization-based and GDT-based
approach for two source images with user scribbles. While
the optimization-based approach creates smoother depth maps,
the GDT approach delivers sharper depth maps along edges,
which is usually preferred in order to reduce the so-called
rubber matte effect2 at depth jumps when converting the im-
age to stereo 3D. The smoothing of the depth maps for the
optimization-based approach may even result in erroneous
depth between objects as can be noticed in the middle of the
bottom row in Fig. 4 (see close-up). A main disadvantage
of the optimization-based approach, however, is its computa-
tional complexity which makes the interaction approximately
5 to 10 times slower compared to the GDT-based approach.

In Fig. 5 we compare our GDT approach against the
StereoBrush on the picture set used in [25]. Note that we
used the depth maps provided by Disney Research Zurich
and did not run our re-implementation of the StereoBrush on
this data. Again, the GDT approach delivers sharper edges
at depth jumps which is preferred. Furthermore, the Stereo-
Brush seemed to cause errors in certain regions. For instance,
the depth propagation at the top right corner of the cave pic-
ture (first column) is incorrect. Such incorrect depth propaga-
tion is even more noticeable in the picture with the drawing
of the rail tracks. The depth at the end of the tunnel does not
match with the scribbled depth.

A more comprehensive evaluation of both approaches can
be found in [26]. The results show that the GDT-based ap-
proach outperforms the optimization-based approach of the
StereoBrush for both single images and image sequences.

2https://www.fxguide.com/featured/art-of-stereo-conversion-2d-to-3d-
2012/

5.2. Performance evaluation of our online deep learning
based interpolation method

In order to create a depth map sequence from a RGB se-
quence, we first scribbled keyframes within an image sequence
and computed the depth within each keyframe using our GDT-
based approach. Then, we applied two different interpola-
tion techniques, the 3D-GDT described in section 3.3 and
the DSB-CNN based on the online trained CNN described
in section 4, to eventually fill the gaps between the scribbled
keyframe depth maps. Finally, we compare quantitatively and
qualitatively the results of the two interpolation techniques
versus ground truth for a set of 9 image sequences containing
different scenes: static, dynamic, outdoor, indoor and even an
underwater shot (sequence 9). The scribbled keyframe depth
maps are used for training the network specifically for each
sequence. The working image resolution is 480x270 pixels
and the number of keyframes for each sequence is included
in Table 2. In our experiments, we found that training such
a network is relatively fast and takes about 10 to 30 min per
shot with an Nvidia Titan Xp (see section 6 for a further dis-
cussion). The ground truth depth maps had been obtained
from a manual cinematic 3D conversion workflow, and are
only used as reference for the depth scribble process and for
the comparison of both interpolation approaches.

Table 2 shows the mean absolute error (MAE) of interpo-
lated frames (scribbled keyframes excluded) for both tech-
niques versus ground truth depth. For eight over nine se-
quences the DSB interpolation outperforms the 3D-GDT. Fur-
thermore, in the only sequence were the 3D-GDT performs
better (sequence 8) the two average mean absolute difference
errors are very close. We also show per-frame mean abso-
lute error in Fig. 6 for eight of our nine sequences. These
curves show that the DSB-CNN produces in general more
stable results than the 3D-GDT when interpolating between
scribbled keyframe depth maps (lower average standard de-
viation of the mean absolute error). Note that this is also the
case for sequence 8, despite the slightly higher average error
of the DSB-CNN, the curve seems to indicate that the result
is more consistent temporally. Fig. 7 shows a visual compar-
ison for several frames of the estimated and the ground truth
depth maps from sequence 9. In this case the interpolated
depth maps using DSB-CNN are also visually better than the
ones interpolated using 3D-GDT. DSB-CNN produces more
consistent and also more accurate depth maps when compar-
ing to ground truth. At this point we need to mention that
we scribbled depth values into objects using the ground truth
as reference in order to eventually compare our results on the
same basis. In a real production, ground truth is not needed.

Finally, Fig. 8 shows different renderings of frame 75 of
sequence 3: the anaglyph stereo images, color-coded dispar-
ity maps and 3D scene views. The DSB-CNN leads to ren-
derings closer to ground truth and is therefore more realistic
with a much higher quality and depth range than the 3D-GDT.



Fig. 5: Comparison between the StereoBrush (optimization-based) [25] (middle row) and our GDT-based approach [26] (bottom
row) using similar but not identical scribbles.

Sequence 1 2 3 4 5 6 7 8 9
# of frames (# of keyframes) 94 (5) 275 (12) 393 (17) 325 (8) 300 (12) 581 (14) 33 (4) 127 (6) 25 (6)

3D-GDT 16.15 5.44 12.13 24.23 9.55 8.84 19.64 10.63 16.01
DSB-CNN 11.42 4.04 9.04 22.15 9.35 7.95 18.86 10.86 13.22

Table 2: Mean absolute error comparison of 3D-GDT versus DSB-CNN. Depth values are coded between 0 and 255.

1

2

3 4

5 6 8 9

3D-GDT DSB

Fig. 6: Per frame mean absolute error (sequences 1-2-3-4-5-6-8-9) of 3D-GDT (red) versus DSB-CNN (blue).

This difference in subjective quality can also be observed in
the objective results in Fig 6. As sequence 3 is a dynamic
shot with tracking camera, foreground objects in intermedi-
ate frames may not overlay with the original scribbles at the
keyframes any longer as mentioned in section 3.3. Instead,
they may cross the position of scribbles which belong to the
background, i.e. foreground objects will move closer to the
background as can be seen on the left and right side of the
desk as well as at the candles in the middle column of Fig. 8.

6. CONCLUSION

In this paper, we introduced a novel interactive depth map
creation framework for image sequences which uses depth-
scribbles as input at user-defined keyframes. These scribbled
depth values were then propagated within these keyframes
and across the entire sequence using a 3-dimensional geodesic
distance transform (3D-GDT). In order to further improve the
depth estimation of the intermediate frames, we applied on-
line learning of a CNN for each sequence individually using



Frame 1 (key) Frame 5 (key)Frame 2 Frame 3 Frame 4

Fig. 7: Sample depth maps of sequence 9: source images with scribbles on keyframes (1st row), high quality ground truth depth
maps from manual cinematic 3D conversion workflow (2nd row), 3D-GDT (3rd row), DSB-CNN (4th row).

the user generated depth at keyframes along with correspond-
ing RGB images as training pairs. Furthermore, we integrated
this approach into a professional interactive depth map cre-
ation application and compared our results against the state
of the art in interactive depth map creation.

We first demonstrated that our GDT-based approach out-
performs the optimization-based approach introduced by Dis-
ney Research for pictures. In a second experiment, we eval-
uated and compared our 3D-GDT and DSB-CNN approach
on intermediate frames, i.e. non-scribbled frames. Our re-
sults showed that the DSB-CNN outperforms the 3D-GDT for
most of the sequences in terms of MAE and for all sequences
in terms of stability and consistency over time.

The online training time required by DSB-CNN is signif-
icantly lower than the training time required by other CNN-
based approaches for depth estimation, since our training data-
set just consists of the user-scribbled keyframes. Neverthe-
less, this required time may prevent its use in an interac-
tive realtime workflow. To circumvent this circumstance, the
3D-GDT can be used during the real time operation of the
scribbling and visual feedback process as depicted in Fig. 1
along with a fast depth-image-based renderer (DIBR) which
includes a simple extrapolation technique to fill occlusions
when rendering stereo pairs [23]. The final rendering of high-
end depth maps and stereo image pairs can be then performed
offline in a render farm where the 3D-GDT and the renderer
are replaced by the DSB-CNN and a high-quality offline ren-
derer with more advanced inpainting solutions, respectively.
Such workflows are currently integrated in many professional
vfx pipelines. For confidential reasons, we cannot disclose
further details of the underlying rendering processes.

Finally, we will provide the used datasets including ground
truth depth maps for future research in this area.
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